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The travelling-wave plasma converter 

By H. K. MESSERLE 
School of Electrical Engineering, University of Sydney, Sydney, Australia 

(Received 13 August 1963 and in revised form 9 December 1963) 

The travelling-wave plasma converter is analyzed allowing for the compressible 
nature of the fluid. The study is restricted to conditions for which the magnetic 
Reynolds number is small. Steady and time-varying flow conditions are investi- 
gated using small perturbation theory. Relations for optimum conversion effec- 
tiveness are established and the effects of variable electrical conductivity are 
investigated. Conditions for electromechanical resonance are derived and it is 
shown that the conversion process introduces a damping effect. 

1. Introduction 
Travelling magnetic waves can be used to convert kinetic energy in a moving 

ionized gas or plasma into electrical energy. The principle involved leads to an 
electrodeless conversion process which has received attention recently as one of 
the possible alternative approaches for large-scale generation of electricity. 

So far, interest has been concentrated mainly on plasma converters employing 
direct current and static fields (see, for example, Rosa 1961) and experiments 
have already reached a very promising state for applications in the fields of 
electrical power generation and jet propulsion. A number of the practical 
difficulties associated with the d.c. converters could be avoided by using alter- 
nating electrical and gas dynamic quantities. 

The general problem of electromechanical energy conversion in plasmas 
using alternating magnetic fields has been discussed by Barnes (1961), George 
& Messerle (1962), and Clark, Swift-Hook & Wright (1963), and the travelling- 
wave generator is described in more detail by Blake (1957), Fanucci (1962), 
and Jackson & Pierson (1962). In  the travelling-wave converter a travelling 
magnetic flux wave moves in the direction of flow of the plasma as shown in 
figure 1. If the flux wave and plasma velocities differ, an electromechanical 
interaction takes place and for a fast magnetic wave the plasma is accelerated 
and electric energy is converted to kinetic plasma energy. When the wave 
velocity trails behind the plasma velocity, the conversion process reverses and 
kinetic energy can be converted into electrical output. The travelling-wave 
converter is then essentially a linear induction generator. 

Electromechanical interaction is most effective when the magnetic field is 
at  right angles to both the plasma flow velocity and the electric current in the 
plasma. In  such a case we are dealing with the so-called crossed-field interaction. 
In  some of the high velocity propulsion applications, or for very high electrical 
conductivities, this condition is not met in practice. As shown, for example, in 
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figure 2 for a cylindrical coil arrangement the flux lines along the centre axis are 
parallel to the flow and some of the plasma will unavoidably slip through a 
narrow neck along the axis without taking part in the interaction. 

A transverse travelling wave as shownin figure 1 can be produced by a sequence 
of transverse field windings. Three windings per wavelength are shown in the 
figure, but any number greater than one may be used in practice. The windings 

Field structure 
for one wavelength 

FIGURE 1. Schematic layout of travelling-wave converter showing flux wave 
and a stationary 3-phase field arrangement. 

I 

Travelling-wave 
/ \ 

Cylindrical coil and duct 
FIGURE 2. A travelling-wave converter using a co-axial field winding. 

have to be equally spaced over one wavelength and each of them has to provide 
a flux which varies sinusoidally in time at  the wave frequency f. If  the flux 
density distribution for each winding is also sinusoidal in space, the result is a 
travelling transverse wave of constant amplitude as long its the time phases are 
properly correlated. 

The travelling wave induces currents in the plasma depending on the relative 
velocity of wave and plasma leading to a reaction flux wave in the plasma which 
travels at the relative velocity. This plasma reaction flux wave corresponds to 
the armature reaction flux on a conventional induction machine which interacts 



The travelling-wave plasma converter 579 

with the stationary windings, and provides the mechanism for energy exchange 
between the moving plasma and the stationary windings. 

Application of the travelling-wave converterprinciples have first been restricted 
to the so-called linear motor and later to the pumping of liquid metals. A fairly 
detailed analysis of the incompressible flow in a liquid metal pump was given by 
Blake (1957). Blake’s study was extended later with particular reference to the 
generation of electrical power with gaseous fluids at high temperatures as 
discussed by Fanucci (1962) and Jackson & Pierson (1962). This work was 
mainly concerned with conditions when a relatively large electromechanical 
interaction is possible and in particular for relatively large magnetic Reynolds 
numbers. Because of the complexity of the problem the effects of compressibility 
of the fluid were neglected and the electrical conductivity was assumed as con- 
stant. However, the compressible nature of the flow will modify the flow con- 
ditions, and the energy conversion process must be affected by changes in elec- 
trical conductivity, which is a very sensitive function of gas temperature. 

As shown by Clark et al. (1963), the interaction to be expected even with seeded 
gases will be small, in which case the distortion of the magnetic field due to any 
self-induced flux is small. It should be possible then to analyse the effects of 
compressibility and variable electrical conductivity of the fluids employing 
small perturbation techniques as shown for the d.c. converter by Messerle & 
Morrison (1962). 

In  this paper compressible flow conditions are studied allowing for variable 
electrical conductivity and the conditions of electromechanical resonance are 
established. Steady and time-dependent flow conditions are dealt with in turn 
and it is shown how optimum operation is severely modified by the compressible 
nature of the fluid. 

2. Electrical relations for one-dimensional flow 
The electrical relations at any point along the duct of a converter depend only 

on the local flux density B, the electrical conductivity v and the relative velocity 
u, of the plasma jet with respect to the travelling wave. The relative velocity is 
defined as 

where 
and u = plasma velocity 

If the magnetic field is considered as a uniform wave, it is necessary to start 
with Maxwell’s equations when contemplating a complete analysis. 

u, = u-u*, 
uA = constant travelling-wave velocity, 

The critical relations here are 
V X H = I  (1) 

and I = ~+(E+u,x B), (2) 

where H is the magnetic intensity, I the current density, E the voltage gradient, 
B the flux density and v the electrical conductivity. For a relatively low electrical 
conductivity the current density I will be small. The curl relation then simplifies 
considerably, and the variations in current and plasma velocity across the duct 
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become negligible. As shown by Blake (1957), this corresponds to the condition 
of small magnetic Reynolds number RM = u~hpr ,  where h is the wavelength and 
,LA is the magnetic permeability of the medium. 

Referred to the co-ordinates indicated in figure 1, and assuming that no voltage 
is applied (E = 0)  and that the induced voltage is completely absorbed as 
resistance drop in the plasma (on a conventional induction machine this is 
achieved by providing short-circuiting paths alongside the duct), equation ( 2 )  
becomes simply u-lIu = u,B,. 

We neglect here viscosity effects which should be relatively small in a gaseous 
medium especially considering the large volumes involved in practice. The force 
on a volume element of thickness d x  is then given by 

dB = Iu B ,yzdx ,  

and the corresponding flow energy is 

or, substituting for Iu, 
dW,  = U d B  = uI,B,yZdx, 

dW,  = uu,BiuyzdX = ~(u-u , , )  B i a y z d x .  (3) 

This converted flow energy is only partially available as useful output. Some of 
i t  is converted back into random heat energy by Joule heating. The rate of 
generation of Joule heat is 

and the electrical output follows as 
dW, = I;  yzdx/cT, (4) 

( 5 )  dW,, = dTc-dW, = BEcTzJ.zu,(u-uA)~x. 

The output relation (5) is positive when zc > u,,, the condition that electrical 
energy is generated. 

3. Compressible flow relations 
For incompressible flow the velocity along the duct remains constant and this 

effectively decouples the internal energy of the fluid from the conversion process. 
When allowing for compressibility, the conversion relations are then consider- 
ably modified. 

For a uniform or slightly changing duct the analysis of compressible magneto- 
hydrodynamic flow in the converter duct can be carried out in terms of one- 
dimensional A ow equations which are the momentum equation 

a 1 aw, ap 
the energy equation P & ( h + 9 U 2 ) + ~ ~  =at’ ( 7 )  

and the continuity equation 
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where p, p and h are the density, pressure and enthalpy, respectively. Additional 
relations required are the equation of state 

P = PWT, (9) 

h = c,T, (10) 

c-r = c-r(T,pL (11) 

the enthalpy equation of an ideal gas 

and the electrical conductivity relation, 

where 92 is the gas constant and cp the specific heat at constant pressure. Rela- 
tions (6) to (8) cannot be solved in general and for the travelling-wave converter 
particular conditions will now be examined. 

We assume that to a first approximation time variations in flow conditions 
produced by the flux wave are small so that time derivatives may be neglected. 
The momentum and energy equations then become 

These two equations can be expressed non-dimensionally as 

and +B2ZYZE(U-E)  = 0, 

B, is the maximum value of B in the flux wave, and zero subscript refers to 
inlet value. 

These equations are now in a form in which they can be solved for velocity U 
and pressure P if we know the flux B, the conductivity c-r and the cross-section 
y,z. For the travelling-wave converter we can specify B. The cross-section is 
generally assumed constant, although we shall look briefly at the effect of a varia- 
tion in cross-section later. 

The most difficult quantity is the conductivity which varies quite rapidly 
with temperature and to a lesser degree with pressure. Typical relations for 
equilibrium conditions are shown later in the table on optimization. There is 
experimental evidence though that equilibrium conditions do not apply in 
combustion flames and that the expansion process is too fast for the equilibrium 
to  be established. There is also evidence that the electron temperature will 
depart from the gas temperature when a heavy electrical current flows. As tt 
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consequence, equilibrium relations are suspect in our context. The linearized 
approximation to conductivity used later on should, however, at least provide 
a general indication of the effect of conductivity variation with flow conditions. 

In  order to solve the equations only small perturbations are considered in the 
following sections. 

4. Uniform duct 
For a uniform duct the cross-section remains constant and we have 

Y = Z = l .  
Hence equations (14 ) ,  ( 1 5 )  become 

and 

If we are interested in the deviations Ul and Pl of U and P from their values for 
x = 0, i.e. from Uo and Po, these equations can be simplified. We have then 

u = u, + U1(X, t ) ,  P = Po + P1(X, t ) .  

For the electrical conductivity we have 

c = &+&, 
where El is to be derived from the general temperature and pressure dependent 
conductivity function (T( T ,  p ) .  Expanding the conductivity function about 
go we have (T( T ,  p )  = go + gT TI + c p p l  + (higher-order terms), 

where gT and up are the partial derivatives of CT with respect to T and p evalu- 
ated at (T@, po). Introducing normalized quantities this gives 

Xl = gl/go = K, Pl + Ku U, + (higher-order terms), 
where Kp =jC~yMgUo+Xp, K ,  = C T ,  

ET = gTTO/cO, C p  = g p p O u ~ / ~ O .  

The two basic flow relations can now be expressed in terms of their deviations 

[D + B2( 1 + C,)] Ul + ( D  + C,) Pl = - B2( Uo - E )  + (higher-order terms), ( 1 8 )  

Y 

from their values at the duct entry and putting a /a t  = D, we get 

-PoD+B2(1+CU)E U1+ ~ U,D+C,E Pl = -B2E(Uo-E) 

+ (higher-order terms), ( 1 9 )  
1 [Y- 1 I [ Y - 1  

where Cu = KU(U0-E), Cp = Kp(U0-E). 

For practical operating conditions two simplifications may be allowed: 
(a) higher-order terms can be neglected if we consider only small changes in 

(b )  we may consider only the average value of B2 initially and may allow for 
P, and U, and as long as the interaction terms on the right-hand side are small; 

sinusoidal variations later using superposition. 
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The relations for average values then become 

D+C,E P,=-E(1-E),  ) -p ,D+D+(l+cLT)E u1+ __ 
[ Y - 1  I (Y-1  

Solving these relations we get 

where 

x {-C, [E + (1 - E )  J43-Cp[ (  1 - E )  + I / ( ?  - 1 )  M:]), 

ME = (yP0)-l = ut/a:, where a is the velocity of sound, and the derivatives of 
U, and Pl at 6 = 0 are 

u; = [ Y - ( ? - 1 ) W - E ) ,  p; = [YPO - (Y - 1 )  El ( 1  - E )  
(1 /Mt -  1 )  (1IMi - 1) 

We have also XT > 1, - 1 < X p  < 0 for partially ionized gases. 
The results obtained are interesting and raise a number of issues. Whether 

we allow for electrical conductivity variations or not the initial rates of change 
in velocity and pressure remain unaltered. Hence the conductivity variations 
are only effective after some flow changes have taken place. The solutions for 
constant conductivity correspond closely with those for a d.c. conduction type 
plasma converter as discussed by Messerle & Morrisson (1962). 

The effect of conductivity variation is to reduce the interaction of the flow 
with the magnetic field downstream. This is apparent when considering the reduc- 
tion of the root due to the relatively large value of CT for actual conductivity 
functions. 

The solutions become singular for Mo = 1 which indicates the possibility of 
producing choked conditions in a uniform duct. It shows also that small per- 
turbations can have drastic effects once the flow approaches the velocity of 
sound. 

Choking can be prevented by the change in electrical conductivity for a very 
large value of the conductivity parameter XT. In that case the conversion or 
interaction dies away along the duct and the velocity settles down to an asymp- 
totic value. This can be deduced directly from relation ( 2 2 ) ,  since the character- 
istic root changes sign for large C, and the velocity limit becomes 

= U,,, for No < 1, 

= Umin for &(, > 1. 
u, = u,+ UA/A{ 

This effect is really undesirable from the practical angle, since it sets a limit 
to the energy that can be extracted from the gas. Luckily, it  is found that CT 
becomes less critical for higher temperatures. Conditions producing non-equili- 
brium ionization will also reduce the effective value of CT. 
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Choking can also be avoided by changing the cross-section along the duct. 
In  the subsonic case considered here the velocity tends to increase in the constant 
area duct and this is prevented by having a diverging duct. The shape can be 
designed to provide, for example, constant velocity or constant Mach number 
along the duct. The general form of the duct depends, however, on the loading 
and any electrical load change away from the design load requires a new duct 
shape, if a particular velocity distribution is desired. 

As an example, consider a constant velocity for the load corresponding to 
any given E. If the width y of the duct is held constant and if only x is varied, 
an approximate relation for z can be deduced from the linearized flow equations. 
The required shape becomes in the case of constant (T 

y = const., z = zO+z1, 

A, = - E ( l - - E ) ( ~ ~ - l ) M ~ .  

Hence the shape depends on E and the entrance Mach number. When conducti- 
vity variations are allowed for, the shape becomes a function of inlet temperature 
as well. 

Flow and choking conditions are also modified by the heat loss from the plasma. 
For small-sized converters this loss can be quite severe; however, it is expected 
to be reasonable for converters in the megawatt region. 

5. Power flow relations 
The electrical output at any position along the duct was given by relation ( 5 ) .  

Introducing the small perturbation relations, it  is possible to express the electrical 
output also in terms of a steady reference quantity Kr0 and a perturbation com- 
ponent wezl. To show this, substitute (uo + ul) for u into (5), i.e. 

d W ,  = B;(TYZ[UA(UO - U J  + Z C A U ~ ]  dx = d q 0  + dwell, ( 2 5 )  
where dWdo = BE ( T Y Z U ~ ( U ~  - uA) dx = Bg (TZJZU; E( 1 - E )  dx 

is the incompressible flow power, and 
dWd, = BE (TYZU, uldx = BE (TYZU; E Uldx 

is the perturbation effect due to compressibility. The component of power 
due to incompressible flow is for constant (T, so that 

KO = 1; dW,, = ~B&(TA yxu; E( 1 - E) .  

Introducing the inlet Mach number M,, this becomes 
w,, = W,M&E(l-E) = -s(l-s)-2WaM& (26) 

where W, = iBL(~Ayza;,  E = (1 - s)-l, and s = unl(uA - uo) is the slip factor. 
For the perturbation component we have, if (T is constant, 

P A  P A  
FGl = J o  dWdl = ( ~ y x u i E  J B2Uldx. 

0 
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This contains a number of second and fourth harmonic terms, but they all 
average out and we get finally over one wavelength of duct 

wel, = $Bk CTYZU; E 77; Sh = iK  E U; 6. 

The total power is then 

0.6 

0.4 I 
--co - 4.0 - 1.0 - OI25 0 s  

FIUURE 3. Electrical power output plotted against E for constant 8 (=  1) and showing 
the effect of increased inlet Mach number Mo. 

This is the electrical power allowing for compressibility. The perturbation 
effect depends on the change of velocity and the parameter 6, which is the only 
quantity related to the density of the plasma. 

Relation (28) can be put into different forms and introducing slip s, it becomes 

For small Mach number M, and for small S we find that the compressibility has 
little effect on the overall power conversion process, and it is of interest to have a 
closer look at  the effect of some of the critical parameters. Typical results are 
plotted in figures 3-5. The effect of increased inlet Mach number is shown in 
figure 3. The perturbation is much more pronounced as we approach sound 
velocity and choking must be watched. For a relatively large perturbation 
power the approximations used here obviously fail and the curves only provide 
a general guide. Digital computer checks, however, have shown that the linear- 
ized relations are very good for practical operating regions as long as they are 
restricted to subsonic flow. For supersonic flow greater care has to be taken as 
shown by Messerle & Morrison (1962). 
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1 

--co - 4  - 1  - 025 0 s  
FIUURE 4. Electrical power output plotted against E for constant M,, (= 0.4) 

and showing the effect of changing 8. 0 = choke points. 

6 = 1  
2.0 

0.5 

S 

uOi% 

FIGURE 5. Electrical power plotted as function of s for constant S (= 1) 
end showing the effect of raising the wave velocity. 
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The effect of changes in the length parameter 6 are shown in figure 4. An 
increase in 6 here corresponds primarily to an increase in the electrical con- 
ductivity, or a decrease in the plasma density. 

when holding the wave velocity constant, the power increases indefinitely 
with negative values of s as shown in figure 5.  This conclusion will have to be 
modified later when allowing for variability of r ~ .  

6. Time-dependent flow variations 
So far, the effect of the sinusoidal flux components has been ignored. For a 

complete analysis the general one-dimensional flow equations must be used. 
Relations (6) to (8) apply with 

a a  a 
at - at+"G' _ -  

If we consider again only small variations, these relations, after elimination of 
all variables except p ,  and ul, reduce to 

and 
(Dt+uoD, +pi1B2~o)~1+pi1D,.1 = -P-~B~~T(uO-UJ,  (30) 

1 
[( cP T, + u;) 0, + U O  Dt +pi1B2go UJ ~ 1 +  p i 1  - Dt+ --21--uoDx] P, [Y-1  Y - 1  

= - p - 1 B 2 ~ ~ A ( ~ o - ~ A ) ,  (31) 

where D, = a/ax and Dt = a/at. At this stage the electrical conductivity is 
assumed to be constant and only a very short duct length, or small interaction, 
is considered. 

The time variations are sinusoidal since both forcing functions on the right- 
hand side of equations (30), (31) depend on BE, where 

BE = $Bi[1+ cos 2(wt - 2nA-l x)] .  

The constant term has been discussed earlier, hence only the double-frequency 
term is of relevance. The differential operators so become, for the double-frequency 

(32) 
variations, D, = -4nih-l and D ,  = 2wi. 

If we ignore higher harmonics in the terms containing B2, we have to replace 
B2 by B$/2 on the left-hand side of equations (30) and (31). As follows the 
characteristic determinant for equations (30) and (31) has the value 

+ [ Z ~ ~ D , + ( y u , - ( y -  l ) u A ) A ]  B2 g D,+u;(l-l/M;)D% 
2Po 

and this leads to 

47T 
A = (F)2- 1 

Po(Y - 1) 
where 
and HA = uA/ao. 

6, = B i  aA/2poao = interaction parameter, 
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The characteristic determinant now allows us to study the fluid flow response 
to sinusoidal perturbation. Its roots determine resonance conditions if they 
exist. 

The two characteristic roots are 

which indicate a resonance effect for small values of 8,. For very small inter- 
actions, or for zero field, singular solutions arise when 

M, = M / +  1, 

or urn = uA + a, = resonance velocity. 
Hence for small interaction the sinusoidal flow disturbance can be critically 
amplified if the wave velocity lags, or leads the plasma velocity by the velocity 
of sound. 

It is important to  realize that the relative sound velocity uor becomes critical 
for sinusoidal interaction and not the absolute sound veIocity a, which is critical 
for the steady interaction component of the travelling wave. For design purposes, 
therefore, both conditions have to be considered since the travelling flux wave 
produces both types of interaction. 

For practical conditions the plasma velocity can be expected to be below that 
of sound. In  that case both critical wave velocities can be expected to be outside 
the operating region, since one would be above that of sound and the other one 
negative. The resonance conditions for small interaction, therefore, would lie 
outside the region of the operating velocities. For larger interaction the charac- 
teristic roots indicate that the resonance is damped and the resonance conditions 
change. We have then 

or the resonance velocity approaches the wave velocity for large interaction. 
In practice it is found that the interaction parameter 8, is of the order of 5 or less. 
Thus actual interaction is usually low and the resonance effect should be notice- 
able. 

IuA-Uorl < “0, 

7. Discussion 
General performance characteristics were shown in figures 3-5, and optimum 

operating conditions can be deduced quite readily for incompressible flow. 
When considering generation of electricity, there is usually a given practical 
maximum plasma velocity. For this velocity it is then desired to find the travel- 
ling-wave velocity which leads to maximum power output. 

In  terms of plasma velocity the electrical output is (ignoring the perturbation 
(36) term) 

This is a maximum when 
W, = - S( 1 - s)-’ W, Mi.  

s = - 1  , or uA = &u,, 

Hence, maximum power for fixed plasmavelocity is obtained when the travelling- 
wave velocity is half that of the plasma. This is generally called the optimum 
condition; however, for a fixed wavelength h the wave speed can be changed 
only by changing the frequency f. 

and then Klrnar = aKM& 
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If the frequency is kept constant, the wavelength must change as uA changes 
and the output becomes 

since 
and 

w, = 4 1 - 4 - 3 9 ,  (37) 
h = U A / f  = (1 - s)-luO/y, 

W, = & ~ B ~ ~ J Z C T / ~  = W, MguO/uA. 

The maximum occurs now for s = - 4, i.e. when the wave velocity is 213 of the 
plasma velocity and the maximum output is 

J%,, = &% 
This maximum is less than the one obtainqd for constant A, if we set as reference 
a A, = u O / f .  In  that case 

w,,,, = iwarMg = $6 > W{[,,,. 

In practice both f and h are fixed. The frequency is determined by the system 
and then h can be determined if the optimum plasma velocity is known. The 
optimum plasma velocity is determined by the velocity dependence of the 
electrical conductivity which overrides the rise in power density with velocity, 
due to the velocity terms in relations (36) and (37). 

The electrical conductivity in a converter duct depends on the local conditions 
at any point. As the plasma velocity is raised, the local temperature and pres- 
sure drop, hence conductivity, changes too. It drops in practice because of its 
sensitivity to temperature variations and the resulting effect on power density 
can be studied by using either theoretical or experimental expressions for it. 

The theoretical relationship between conductivity and the thermodynamic 
quantities is usually based on Saha’s equation which applies for equilibrium 
conditions. Whether equilibrium conditions exist in a converter duct is question- 
able as discussed earlier. Consequently, any deductions based on equilibrium 
conditions only provide a rough guide. 

Using Saha’s equation, Ralph (1961) has shown for the direct current plasma 
converter that optimum Mach numbers are restricted to about 0.5 for gases 
seeded with alkali metals. Using a more flexible approximation, Swift-Hook 
& Wright (1962) have shown that the Mach number may be somewhat higher 
depending on the ratio of specific heats. In  the case of the travelling-wave con- 
verter these conclusions can be applied directly for the constant wavelength 
conditions. For fixed wave frequency, however, the optimum Mach number can 
be up to 50% higher. The optimum conditions are compared in table 1 for 
conversion conditions per unit wavelength. In  the constant frequency case a 
higher Mach number becomes permissible because of the lengthening of the 
duct as wave velocity goes up. In practice this leads to the question of multiple 
wavelengths and a comparison of multiple wavelength converters at low velocity 
with high velocity converters using a smaller number of wavelengths. 

Multiple wavelengths are actually desirable for practical operating reasons. 
The sudden transition from a field free region into the field region of a converter 
produces a disturbed region in the plasma with considerable eddy current losses 
unless the transition is graduated. Blake (1957) has shownfor liquid-metal travel- 
ling-wave pumps how the transition can be smoothed out when using multiple 
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wavelengths. The method is to allow the field amplitude to  build up and reach a 
maximum over the middle section of the converter covering several wavelengths. 

For a plasma converter operating at Mach numbers of the order of 0.5 the 
wavelengths for ordinary power frequencies are of the order of 5 m. Such lengths 
will restrict the application of multiple wavelength principles; however, a super- 
position of several wavelengths of slightly differing individual length might 
provide a solution as suggested by Sudan (1 963). 

TB 
u = b - dT, b and c = const. 

P* 

2 8  
Constant Mop, = __ -"lo,t = [ (b+  1) (7- 1) - (c+  1) y]-4 

h Y-1 

B = (g + 2j) + [(g + 2 j  + 112 + ~ g j $ ,  
2c . 3y 9 

To ' 2(Y-1) 4 

y- 1' 

9 = -  II=--- 

2 H  
Constant Mopt = ~ Mop, = 24[(b + 1) (y - 1) - (c + 1) 71-9 

= (9 + 2q + 1 ) + [ ( g  + 2q + 2 ) 2  + 8gq$ 
f 

3y 11 

2(Y--1) 4 
q = - - -  

TABLE 1. Optimum Mach numbers. 

In conclusion it must be mentioned that the problem of the energy required to 
produce the travelling wave still remains to be solved. Using present-day tech- 
niques, the inductance of the field structures becomes very large. This leads to 
excessive reactive power requirements. However, the problem may be overcome 
by working at higher frequencies or by raising the operating temperatures into 
regions beyond 3000 OK as considered in most applications to date. 
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